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Abstract

Household food waste is a large contributor to
the global food waste crisis, which furthers the
issues of world hunger, economic losses, and
greenhouse gas emissions. We address this by
developing an AI-powered recipe generation
model that takes in a user’s available ingredi-
ents and recipe preferences, including dietary
restrictions and cuisine. The generated recipe
uses ingredients users may need need to get rid
and minimizes the need to buy additional ingre-
dients that could go unused, all while following
their preferences. We trained language genera-
tion models BART and LLaMA3 on a dataset of
online recipes from Food.com. Our LLaMA3
model was then fine-tuned by implementing
constrained decoding to generate recipes in
a standardized format, penalize recipes that
violate dietary restrictions, and reward those
that maintain the authenticity of their cuisines.
These models were evaluated based on ingre-
dient accuracy, adherence to user preferences,
and expected quality. From our evaluation, we
found that the fine-tuned LLaMA3 model was
best for generating recipes. Future work aims to
further expand the authenticity of non-Western
cuisines with improvements on our constrained
decoding and evaluation. By prioritizing user
requirements and ensuring cultural and dietary
inclusivity, our model is a promising step to-
ward mitigating food waste.

1 Introduction

As our society increasingly aligns with interna-
tional consumerism, food waste prevails as a global
challenge. Every year, 1.03 billion tons of food
waste are generated, which constitute 17% of
global food production (Li, et al., 2023). This con-
tributes to approximately 3.3 billion tons of green-
house gasses and $750 billion of economic loss.
Households generate approximately half of this
waste. For example, about 70% of food waste in
the UK in 2018 came from households, two-thirds

edible, because of a lack of knowledge about food
edibility and recipes (Teng et al., 2021). However,
as the World Health Organization reported in July
2024, about 1 in 11 people, or 733 million world-
wide, faced hunger last year. This issue of food
insecurity and malnourishment can be mitigated
using the millions of metric tons of food wasted
every year. Thus, food waste and its consequential
impacts on the climate, economy, and food security
are multi-pronged issues that can be addressed with
food and leftover management strategies.

Cooking at home is a cornerstone of daily life,
with 81% of consumers preparing more than half
of their meals at home, according to the National
Association of Frozen and Refrigerated Foods. Of
these consumers, 89% use digital recipes (Petrak,
2023). However, it can be difficult to find recipes
that align with ingredients they have on hand. This
often means extra effort to shop for specific items,
as 75% of consumers use recipes to guide their
grocery choices (Petrak, 2023). Additionally, di-
etary preferences like taste, which is considered by
66% of consumers, and healthiness, 49%, further
complicate the decision-making process (Mitchell,
2023). Finding the right recipe can make cook-
ing at home feel daunting and discourage people.
Yet, cooking at home offers significant benefits:
it’s more affordable, healthier and better for the
environment by reducing energy use and resource
consumption (Hoffman, 2012). Addressing these
barriers could empower more people to enjoy cook-
ing at home.

To simplify the path from ingredient to recipe
and mitigate food waste, we propose a refined
recipe generation model based on available ingredi-
ents and desired user preferences. We test different
large language models and fine-tuning strategies
to determine which one is the best at producing
recipes for each cuisine. To evaluate our model,
we assess ingredient accuracy, recipe preferences,
and expected rating, three important metrics for an



effective recipe. Ultimately, we have a final recipe
generator which uses whichever model is best to
generate a recipe for the user.

2 Related Work

Language models have shown promising results in
various areas, from speech recognition and lan-
guage translation to applications in climate sci-
ences, finance, and other data-driven solutions. Re-
cent AI advancements in the culinary field have
prompted the development of new models and sys-
tems capable of generating recipes, suggesting in-
gredients, and even classifying images of different
dishes and cuisines. For example, researchers have
created RecipeGPT, a model that generates recipes
based on ingredient input (Lee, et al., 2020), and ap-
plied computer vision in food image classification
and nutrient identification (Kaur, et al., 2023). De-
spite these advancements, most of these methods
are limited in scope of inputs and lack robust eval-
uations of the effectiveness of generated recipes.
Instead, researchers focus on coherence and quality
of instructions at the expense of generalizability,
customization, and user satisfaction.

Current recipe generators do not address a user’s
cuisine and ingredient preference. In Majumder
et al. (2019), they use an encoder and two-layer
GRU decoder with a user’s historical taste prefer-
ences as input to generate a new recipe. Though
this model uses historical user data to generate
new recipes based on those preferences, allowing
personalization, it does not assess how well the
generated recipes match specific cuisines or how
the given ingredients are efficiently utilized. In
addition, in Aljbawi (2020), recipes are generated
using three different models. The first is associ-
ation rules, which looks for similarities between
subsets to pick some combination of ingredients.
The second is deep neural networks, which uses
patterns to pick ingredients that normally go to-
gether. The third is BERT, which uses NLP to
predict which ingredients are most likely to follow
each other. However, this research similarly does
not address input cuisines or ingredients to use pro-
vided by the user, despite assessing intra-ingredient
compatibility and coherence.

With current recipe-generating models, there is
a discrepancy between the recipes generated for
Western-flavored dishes compared to non-Western-
flavored dishes due to the model training being
done on English recipes (Saxena, 2023). This

means that when producing dishes of non-Western
cuisine, they often taste worse and lack authen-
ticity compared to dishes of Western cuisine. In
Lee et al. (2020), the researchers evaluate cultural
accuracy and creativity for generated recipes of dif-
ferent cuisines, they find that some cuisines lack
variety across the different recipes generated for
that specific cuisine. We circumvent this issue by
fine-tuning our model so that it will specifically
generate recipes of comparable value across all
cuisines.

Existing models like GPT-3 often generate
recipes that include unnecessary or unfamiliar in-
gredients, which can be impractical for users (Kr-
ishna and Metz, 2022). Moreover, these models
sometimes overlook dietary restrictions. To address
these limitations, our model takes a user-centered
approach by prioritizing the ingredients users al-
ready have or prefer. This naturally aligns with
their dietary restrictions since users input ingredi-
ents that reflect their preferences and needs (e.g.,
a vegetarian user wouldn’t include beef as an op-
tion). Additionally, users can explicitly specify
dietary constraints, such as vegan, gluten-free, or
low-sodium, ensuring that the generated recipes are
accessible and user-specific. This approach min-
imizes unfamiliar ingredients while maximizing
utility.

Finally, frequent concern with AI-generated
recipes is that they can be too generic, making
them lack flavor (Saxena, 2023). In order to pre-
vent our generation from recommending bland or
bad-tasting recipes, we evaluate recipes based on
how tasty we expect them to be. We do this by
using similar existing recipes and their ratings to
predict what the rating/user satisfaction with the
generated recipe would be, our expected rating met-
ric.

3 Methodology

3.1 Dataset

Our model is trained and tested on the “Food.com
Recipes and Interactions” open-source dataset, a
collection of over 230,000 online recipes (Li, 2019).
Each recipe has accompanying information includ-
ing an ingredient list, cuisine type, nutritional in-
formation (e.g., high-protein, low-fat), dietary re-
strictions (e.g., vegan, diabetic), meal type (e.g.,
breakfast, dessert), rating, and step-by-step instruc-
tions. This dataset is more suitable than others
because it 1) has an extensive and diverse range



of ingredients, preparation steps, and cuisine types
(e.g., Polynesian, African, Lebanese), and 2) in-
cludes ratings, dietary restrictions, and nutritional
information which enable the model to better ac-
commodate a wide range of user preferences. Data
preprocessing is conducted using the Pandas and
NumPy libraries to extract relevant features and
convert the dataset into easily manageable formats.
The dataset is divided into a training set (70%) and
a testing set (30%). The testing split is utilized to
generate prompts formatted for recipe generation
in the following structure:

Ingredients Available: [ingredients]
Preferences:
- Meal Type: [meal type]
- Dietary Restrictions: [dietary restrict.]
- Nutrition: [nutrition requirements]
- Cuisine: [cuisine]
Generate a recipe.

3.2 Tokenization and Model Fine-Tuning
For this study, we fine-tuned two state-of-the-
art text generation models, LLaMA3 and BART,
leveraging the Hugging Face Transformers library.
The tokenization process used the respective to-
kenizers of each model for precise segmentation
and encoding of input text, optimizing it for the
fine-tuning process. Fine-tuning was conducted
using a causal language modeling objective for
LLaMA3 and a sequence-to-sequence objective for
BART. LLaMA3, as a decoder-only model, gen-
erates recipes autoregressively by predicting the
next token based solely on prior context, whereas
BART, an encoder-decoder model, first encodes
input prompts into latent representations before
decoding them into recipe outputs. While both
models showed strong capabilities, LLaMA3 was
chosen for its superior performance and its compat-
ibility with constrained decoding. The autoregres-
sive nature of LLaMA3’s architecture simplifies the
integration of constraints during token generation,
whereas BART’s encoder-decoder framework in-
troduces additional complexity due to the interplay
between the encoder and decoder components. All
computations for this project were performed using
Google Colab’s A100 GPU for efficient processing
and model training.

3.3 Constrained Decoding
To enhance the alignment of the language model’s
outputs with user-defined requirements, we imple-
mented constrained decoding via a custom logits

processor. This approach introduces three targeted
constraints: a formatting constraint, a dietary re-
striction constraint, and a cuisine relevance con-
straint. These constraints collaboratively guide the
decoding process by adjusting token probabilities
at each step, ensuring the generated recipes adhere
to structural and dietary expectations.

3.3.1 Formatting Constraint
The formatting constraint enforces a standardized
recipe structure, with an Ingredients section fol-
lowed by a Steps section. The logits processor dy-
namically adjusts token probabilities to align with
the current section. During the Ingredients section,
tokens associated with the steps are penalized. Sim-
ilarly, during the Steps section, tokens associated
with the ingredients are penalized.

3.3.2 Dietary Restriction Constraint
The dietary restriction constraint enforces adher-
ence to user-defined dietary preferences by penaliz-
ing tokens associated with ingredients that violate
these restrictions. To do this, we utilized ChatGPT-
4 to generate a comprehensive list of 50 words
that represent violations for each dietary restriction
(e.g., animal-derived ingredients such as chicken
and cheese for vegan recipes, or gluten-containing
items like wheat and rye for gluten-free recipes).
These lists serve as the basis for identifying tokens
to penalize during decoding. For each restricted to-
ken, a penalty weight of -4.0 is applied to its logits,
significantly reducing the likelihood of selection
while maintaining the model’s ability to generate
coherent and diverse recipes. The penalty weight
was empirically determined to achieve a balance
between strict adherence to dietary constraints and
flexibility in token selection. This approach ensures
that the generated recipes align with user dietary
requirements without compromising its fluency or
contextual relevance.

3.3.3 Cuisine Relevance Constraint
The cuisine relevance constraint ensures the gener-
ated recipes align with the requested culinary style
by boosting the likelihood of tokens associated with
the specified cuisine. Similar to the dietary restric-
tion constraint, we leveraged ChatGPT-4 to gen-
erate a list of 50 cuisine-adjacent words for each
cuisine (e.g., basil and parmesan for Italian, or soy
sauce and ginger for Chinese). For each token as-
sociated with the target cuisine, a boost of +1.5
is applied to its logits, increasing the likelihood



of its selection during token generation. The ab-
solute weight of +1.5 was intentionally chosen to
be lower than the -4.0 penalty applied for dietary
restriction violations because of the higher impor-
tance of dietary adherence compared to cuisine
alignment. This approach ensures that generated
recipes incorporate culturally relevant ingredients
while balancing adherence to dietary constraints.

4 Evaluation

We evaluated the generated recipes using three pri-
mary metrics: ingredient accuracy, recipe prefer-
ences, and expected rating. The three scores gen-
erated from these metrics are aggregated into an
overall score for that recipe. We average the overall
scores for the 69,492 recipes in the testing dataset
to evaluate how well that model and the addition
of fine-tuning perform. This comparative evalua-
tion will allow us to analyze qualitative differences
among models and identify which recipe generator
performs best.

4.1 Ingredient Accuracy

Ingredient Accuracy is calculated as an average of
the following two scores.

4.1.1 Input Ingredient Accuracy

Input Ingredient Accuracy is calculated by looking
at the percentage of user-provided ingredients that
are accurately retained in the output. This metric
helps mitigate food waste by ensuring that recipe
generation prioritizes the use of user-specified in-
gredients, reducing the likelihood of discarding
unused ingredients. The score is calculated as:

# of input ingredients in output recipe
total # of input ingredients

∗ 100%

4.1.2 Output Ingredient Accuracy

Output Ingredient Accuracy is calculated by look-
ing at the percentage of ingredients from the gener-
ated recipe that are not included in the input ingre-
dients list. We want to minimize the number of new
ingredients the user must purchase for the recipe to
prevent additional, unwarranted food waste.

# of output ingredients not in input
total # of output ingredients

∗ 100%

4.2 Recipe Preferences
This metric assesses how well the generated recipe
adheres to the following four user-specific prefer-
ence categories: cuisine (e.g., Indian, Egyptian),
nutrition (e.g., high-protein, low-cholesterol), di-
etary restrictions (e.g., vegan, diabetic), and meal
type (e.g., breakfast, dessert). For each generated
recipe, we calculate the cosine similarity between
the model’s output and existing recipes based on
ingredients and instructions. We use this to identify
the 20 recipes most similar to it from our dataset.
For each preference category, we evaluate the per-
centage of the 20 most similar recipes that adhere
to the user preference. The final recipe preferences
score will be calculated as an average of these four
preference categories.

4.3 Expected Rating
Expected rating is calculated using the ratings of
recipes in the dataset that are most similar to the
generated recipe. We use the same method as we
used for recipe preferences to find the top-five most
similar recipes. We use the ratings of these to calcu-
late a weighted average as a proxy for the generated
recipe’s expected rating. The score will be com-
puted using a weighted similarity formula:

5∑
i=1

(
similarityi∑5
j=1 similarityj

× ratingi

)

4.4 Overall Weighted Score
The final overall score is calculated as a weighted
average of the previous 3 metrics: ingredient accu-
racy, recipe preference, and expected rating. We
assign a 45% weight to ingredient accuracy, a 35%
weight to recipe preferences, and a 20% weight to
expected rating. Given our initial motivation and
goal of mitigating food waste, we wanted to em-
phasize ingredient accuracy and recipe preferences.
We assigned a low weighting to expected rating
because recipe ratings are subjective and are often
bimodal.

5 Results

5.1 Performance Metrics Results and
Findings

BART and LlaMA3 generated recipes of certain
formats. Below, we provide examples of the recipes
that were generated.

These are the performance metric evaluation re-
sults of the three models that we tested: BART,



Figure 1: Performance Metrics for Recipe Generation Models. Each plot compares the performance of three
models: BART (purple), LLaMA3 (yellow), and LLaMA3 with constrained decoding (green). The x-axis represents
the model type, while the y-axis indicates the normalized metric score, ranging from 0 to 1. The four metrics
displayed are: ingredient accuracy, recipe preferences, expected rating, and overall weighted score. The values
above bars are the corresponding metric scores.

LLaMA3, and LLaMA3 with constrained decod-
ing. As shown in Figure 1, the constrained decod-
ing LLaMA3 model achieved the highest ingredient
accuracy, 0.631, compared to the baseline BART
and LLaMA3 models 0.606 and 0.581 respectively.
Next, the top-right quadrant of Figure 1 shows that
the constrained decoding LLaMA3 continued to
have the highest recipe preferences score at 0.522,
but BART’s score of 0.507 is slightly higher than
LLaMA3’s 0.497 for this metric. The bottom-left
quadrant of Figure 1 shows that the expected rat-
ing for baseline LLaMA3 is highest at 0.902, then
BART at 0.900, and then the constrained decod-
ing LLaMA3 model’s 0.895. Lastly, the overall
weighted average score remains the highest for
the constrained decoding LLaMA3 model at 0.646,
with LLaMA3 (0.627) and BART (0.619) follow-
ing closely after.

5.2 Example Recipe

Here, we have provided an example of a recipe
generated by the fine-tuned LLaMA3 model with
constrained decoding.

Input:
Ingredients Required: eggs, noodles,

beef↪→

Preferences:
- Meal Type: Dinner
- Dietary Restrictions: None
- Nutrition: High Protein
- Cuisine: Chinese

Generate a recipe.

Output:

**Beef Noodle Stir-Fry with Egg**

Servings 4
Prep Time 15 minutes
Cook Time 20 minutes
Total Time 35 minutes

**Ingredients**

* 1 cup noodles (preferably rice noodles
or egg noodles)↪→



* 1 lb beef (sliced into thin strips),
such as ribeye or sirloin↪→

* 2 eggs
* 2 tablespoons vegetable oil
* 2 cloves garlic, minced
* 1 tablespoon soy sauce
* 1 tablespoon oyster sauce (optional)
* 1 teaspoon sesame oil
* Salt and pepper to taste
* Chopped scallions and sesame seeds for

garnish (optional)↪→

**Instructions**

1. Cook the noodles according to the
package instructions. Drain and set
aside.

↪→

↪→

2. In a small bowl, whisk together soy
sauce, oyster sauce (if using), and
sesame oil. Add the sliced beef and
marinate for at least 5 minutes.

↪→

↪→

↪→

3. Heat 1 tablespoon of vegetable oil in
a large skillet or wok over
medium-high heat. Remove the beef
from the marinade and cook until
browned, about 3-4 minutes. Transfer
the beef to a plate and set aside.

↪→

↪→

↪→

↪→

↪→

4. In the same skillet, add the
remaining 1 tablespoon of vegetable
oil. Add the minced garlic and
stir-fry for 1 minute, until
fragrant.

↪→

↪→

↪→

↪→

5. Push the garlic and oil to one side
of the skillet. Crack in the eggs
and scramble them until cooked
through, about 2-3 minutes.

↪→

↪→

↪→

6. Mix the eggs with the garlic and oil
on the other side of the skillet.↪→

7. Add the cooked noodles to the skillet
and stir-fry for 2-3 minutes, until
the noodles are well coated with the
egg and garlic mixture.

↪→

↪→

↪→

8. Add the marinated beef back to the
skillet and stir-fry for an
additional 1-2 minutes, until the
beef is heated through.

↪→

↪→

↪→

9. Season with salt and pepper to taste.
10. Garnish with chopped scallions and

sesame seeds (if using). Serve hot.↪→

Notes:

* Add a splash of chili oil for spice or
a dash of black vinegar for
tanginess.

↪→

↪→

* Substitute beef with a vegetarian
protein (e.g. tofu or tempeh) to
modify this recipe for vegetarians.

↪→

↪→

* For extra crunch, toss in some water
chestnuts or snap peas.↪→

Enjoy your flavorful and hearty meal!

6 Discussion and Conclusion

In summary, we found that our recipe generator
model of fine-tuned LlaMA3 is the highest per-
forming against our evaluation metrics of ingre-
dient accuracy, recipe preferences, and expected
rating. Not only is it the best model overall, but it
also performed the best in ingredients accuracy and
recipe preferences - both of which were expected
effects of constraint decoding. Since the constraint
decoding forces the recipes to be in a standard-
ized format that first lists all the ingredients and
then details the steps of the recipe, this guides the
model to include all of the ingredients that it in-
tends to use in the recipe. This likely explains the
increase in ingredient accuracy. We also expected
that the recipe preferences would increase with con-
straint decoding, as constrained decoding directs
the recipe to focus on dietary restrictions and cui-
sine preferences. Although the improvements in
ingredient accuracy and recipe preferences came
at expense of a decrease in expected rating, we
are willing to accept this trade-off as it is our least
important metric.

6.1 Limitations and Future Work
We acknowledge that there are limitations in our
work due to the scope of our project. Our evalua-
tion results are anchored on the dataset that we use
to train our model, as many of our metrics are based
on similarity to existing recipes in the dataset. We
also would like to improve on how our expected
rating metric is calculated. A possible alternative to
be implemented in the future would be to directly
survey users of the generated recipes to calculate
ratings and/or utilize ChatGPT to rate the recipes.

While the current implementation of our con-
straint decoding significantly improves the align-
ment of generated recipes with user preferences,
it still has several limitations. First, our current
lists for cuisines and dietary restrictions were lim-
ited to fifty words and may not fully capture the
diversity of real-world terms. Changing from word



lists to word embeddings could increase the scope
of the ingredients we capture. Further, rather than
using GPT-generated lists, using frequency anal-
ysis on our recipes dataset to generate a list of
authentic words could improve the quality of our
lists. Finally, all tokens within our list are weighted
equally, which may oversimplify the relative im-
portance of specific terms. Introducing weighted
prioritization for terms based on their relevance
could improve the effectiveness of our constraint
decoding. Integrating all of these improvements
into our fine-tuning would be promising for future
research.

In addition, our compute cluster is not ideal, as
Google Colab Pro still has usage limits that we
have reached, restricting our ability to train our
models to the utmost extent. As a result, we had
fewer opportunities to experiment with different
architectures and hyperparameters. Rather than
being able to tune our hyperparameters to optimize
our evaluation like we hoped, we had to restrict
ourselves to hyperparameters that would allow us
to train our models with our limited resources and
time.

To enhance the authenticity of our recipes for
non-American cuisines, we would like to also train
our models on datasets that exclusively include
recipes of a specific non-American cuisine in the
future. Incorporating datasets that are in the na-
tive language of the corresponding cuisine could
even further improve the cultural and culinary au-
thenticity of the generated recipes. To improve our
cuisine evaluation metric, we could also seek feed-
back from native speakers, chefs, or home cooks
from the cuisine’s culture to validate the authentic-
ity of generated recipes.

In the future, we believe that more work could be
done on the novelty aspect of the generated recipes.
This is out of scope for this project since our pri-
mary focus is evaluating based on user-preference
fit and not creativity of the model, but we be-
lieve that a large language model that could de-
velop unique recipes, such as fusion cuisine recipes,
could lead to new and creative takes on the fore-
front of recipe generation. By generating recipes
that are difficult to find online or are unique from
existing recipes, this future model could be useful
to users seeking more adventurous culinary experi-
ences.
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